2023 Consumer Confidence Report

Water System Information

Water System Name: CA4410016 Forest Lakes MWC

Report Date: May 3, 2024

Type of Water Source(s) in Use: Ground Water

Name and General Location of Source(s): Eight wells in use, all located within the boundary of the Forest Lakes Subdivision.

Drinking Water Source Assessment Information: An assessment of the drinking water sources for Forest Lakes Mutual Water Company (FLMWC) was completed in August 2002. The sources are considered most vulnerable to the following activities not associated with contaminates detected in the water supply: high density septic systems, storm drain discharge points, Equipment Storage Yard, mining sand/gravel. A copy can be obtained by calling the FLMWC office at (831)335-5774

Time and Place of Regularly Scheduled Board Meetings for Public Participation: Board of Directors Meetings are held at 7 p.m. on the second Tuesday of each month.

For More Information, contact: Dawana Cortez, General Manager – (831)335-5774 Deana Glenz, Water Operator – (831)335-5774

About This Report

Last year your tap water met all U.S. EPA and State drinking water health standards. Forest Lakes Mutual Water Company (FLMWC) vigilantly safeguards its water supplies and once again, we are proud to report that our system has met all drinking water health standards. This report is a snapshot of last year's water quality. Included are details about where your water comes from, what it contains, and how it compares to State standards. FLMWC currently has three (3) independent distribution systems, hence monitoring results are broken down by system. Please see the enclosed map, on page 10, to determine which system serves your residence.

Importance of This Report Statement in the Spanish Language.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse CA4410016 Forest Lakes MWC located at 910 Fern Avenue, (831)335-5774 para asistirlo en español.

Term	Definition
Level 1 Assessment	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an <i>E. coli</i> MCL

Terms Used in This Report

Term	Definition
	violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level (MCL)	The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
Maximum Contaminant Level Goal (MCLG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).
Maximum Residual Disinfectant Level (MRDL)	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum Residual Disinfectant Level Goal (MRDLG)	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
Primary Drinking Water Standards (PDWS)	MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
Public Health Goal (PHG)	The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
Regulatory Action Level (AL)	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.
Secondary Drinking Water Standards (SDWS)	MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.
Treatment Technique (TT)	A required process intended to reduce the level of a contaminant in drinking water.
Variances and Exemptions	Permissions from the State Water Resources Control Board (State Board) to exceed an MCL or not comply with a treatment technique under certain conditions.
ND	Not detectable at testing limit.
ppm	parts per million or milligrams per liter (mg/L)
ppb	parts per billion or micrograms per liter (µg/L)
ppt	parts per trillion or nanograms per liter (ng/L)
ррд	parts per quadrillion or picogram per liter (pg/L)
pCi/L	picocuries per liter (a measure of radiation)

Sources of Drinking Water and Contaminants that May Be Present in Source Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves

naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

Regulation of Drinking Water and Bottled Water Quality

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health.

About Your Drinking Water Quality

Drinking Water Contaminants Detected

Tables 1, 2, 3, 4, 5, and 6, list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Table 1. Sampling Results Showing the Detection of Coliform Bacteria

FLMWC monthly monitors six key locations throughout our three distribution systems for Coliform Bacteria. We are happy to report that no Coliform Bacteria were discovered in 2023.

Microbiological Contaminants	Highest No. of Detection s	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria
E. coli	(2023)		0(a)	0	Human and
Scenic System	ND	0			animal fecal
Ferrari System	ND	0			waste
Gold Gulch System	ND	0			
Total Coliform	(2023)		N/A	0	Human and
Scenic System	ND	0			animal fecal
Ferrari System	ND	0			waste
Gold Gulch System	ND	0			

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

Table 2. Sampling Results Showing the Detection of Lead and Copper

FLMWC monitors ten locations for Lead and Copper. All locations' results were well below the Regulatory Action Level (AL).

Lead and Copper	Sample Date	No. of Samples Collected	90 th Percentile Level Detected	No. Sites Exceeding AL	AL	ЭНd	Typical Source of Contaminant
Lead (ppb)	2022	10	3.5	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppb)	2022	10	139	0	1300	300	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Table 3.	Sampling	Results	for Sodium	and Hardness
	Quinbinis	, itoouito		

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)	2023			None	None	Salt present in the
Scenic System		21	n/a			water and is generally
Ferrari System		27.5	27 - 28			naturally occurring.
Gold Gulch System		78.6	37 - 108			
Hardness, total	2023	450	,	None	None	Sum of polyvalent cations present in the
(PPIII)		156	n/a			water, generally
Scenic System		76.5	76 – 77			magnesium and calcium,
Ferrari System		207.6	17 – 485			and are usually naturally
Gold Gulch System						occurring.

Table 4. Detection of Contaminants with a Primary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Antimony, Total (μg/L) Scenic System Ferrari System Gold Gulch System	2023	N.D N.D 0.5	N.D N.D 3.3 – 0.9	6	1	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic (μg/L) Scenic System Ferrari System Gold Gulch System	2023	N.D 0.5 8.51	N.D N.D. – 1 N.D. –12.10	10	0.004	Erosion of natural deposits runoff from orchards; glass and electronics production waste
Barium (ppb) Scenic System Ferrari System Gold Gulch System	2023	19.6 93.15 6.77	n/a 67.3 – 119 N.D – 13.8	1000	2000	Discharge of oil drilling wastes and from metal refineries; erosion of natural deposits
Chlorine (ppm) Scenic System Ferrari System Gold Gulch System Intentionally left b	2023 lank, conti	1.06 1.07 0.73 nued on n	0.75 – 1.56 0.82 – 1.45 0.30 – 1.21 ext page.	4	4	Drinking water disinfectant added for treatment

Chromium, Total (µg/L)	2017			50	(100)	Discharge from steel and pulp
Scenic System		0.12	n/a			mills and chrome
Ferrari System		0.06	N.D. – 0.11			of natural
Gold Gulch System		0.03	N.D. – 0.09			deposits.
Combined Uranium (ppb)	2023			30	1	Erosion of natural deposits
Scenic System		N.D	N.D			
Ferrari System		N.D	N.D			
Gold Gulch System		6.77	5.5 – 7.7			
Fluoride (ppm)	2023			2	1	Erosion of natural
Scenic System		N.D	N.D			additive which
Ferrari System		N.D	N.D			promotes strong teeth; discharge from
Gold Gulch System		0.43	0.10 – 0.80			fertilizer and aluminum factories.
Gross Alpha Particle Activity (pCi/L)	2023			15	0	Erosion of natural deposits.
Gold Gulch System		3.20	N.D – 7.59			
Mercury (ug/L)	2023			2	1.2	Erosion of natural
Scenic System		N.D	N.D.			from refineries and
Ferrari System		N.D.	N.D.			factories; runoff from landfills and
Gold Gulch System		0.10	N.D – 0.3			cropland.
Nitrate (as N) (mg/L)	2023			10	10	Runoff and leaching
Scenic System		N.D	N.D			leaching from septic
Ferrari System		N.D	N.D			tanks and sewage; erosion of natural
Gold Gulch System		0.14	N.D0.4			deposits.
Nitrate-Nitrite (mg/L)	2023			10	10	Runoff and leaching from fertilizer use:
Scenic System		N.D	N.D			leaching from
Ferrari System		N.D	N.D			septic tanks and sewage: erosion of
Gold Gulch System		0.14	N.D – 0.4			natural deposits.
Radium, Combined (pci/L)	2023			5	0	Erosion of natural
Scenic System		0.13	0.09-0.19			deposits.
Ferrari System		0.163	N.D – 0.36			
Gold Gulch System		0.11	N.D. – 0.84			
Intentionally left bl	ank, contir	nued on ne	ext page.			

Toluene (ug/L) Scenic System Ferrari System Gold Gulch System	2023	0.91 N.D N.D	n/a N.D N.D	150	150	Discharge from petroleum and chemical factories; underground gas tank leaks.
TTHMs (Total Trihalomethanes) ppb Gold Gulch System	2023	4.71	2.0 – 14.0	80	N/A	Byproduct of drinking water disinfection.

Table 5. Detection of Contaminants with a Secondary Drinking Water Standard

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	SMCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (ppm)	2023			500	N/A	Runoff/leaching
Scenic System		20.10	20.10			from natural
Ferrari System		27.20	21-22			influence
Gold Gulch System		10.27	4-133			
Color (units)	2023			15	N/A	Naturally occurring
Gold Gulch System		5.0	n/a			organic materials.
Iron (ppb)	2023			300	N/A	Leaching from
Scenic System		69.5	N.D – 250			natural deposits.
Ferrari System		158.75	N.D – 457			
Gold Gulch System		7.0	N.D - 40			
Sulfate (mg/L)	2023			500	N/A	Runoff/leaching
Scenic System		32.0	n/a			from natural
Ferrari System		38.5	21 – 56			deposits; industriai waste
Gold Gulch System		137.33	22 - 320			waste.
Total Dissolved Solids (mg/L)	2023			1000	N/A	Runoff/leaching from natural
Scenic System		264.0	n/a			deposits.
Ferrari System		225.0	216 – 234			
Gold Gulch System		488.67	302 - 778			
Turbidity (units)	2023			5	N/A	Soil runoff.
Scenic System		2.7	n/a			
Ferrari System		3.0	n/a			
Gold Gulch System		0.10	n/a			
Intentionally left bl	ank, contir	nued on ne	ext page.			

Zinc (mg/L)	2023			5	N/A	Leaching from
Scenic System		N.D.	n/a			natural deposits.
Ferrari System		0.017	N.D. – .03			
Gold Gulch System		N.D	N.D			

Table 6. Detection of Unregulated Contaminants

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Health Effects
Boron, Total (mg/L)	2020			1	Most human exposure to boron comes from either
(IIIg/L) Scopic System					boric acid or borax. Boric
		N.D	n/a		acid is the form of boron
Ferrari System		N.D	n/a		encountered in drinking
Gold Gulch System		0.983	0.025 – 0.14		water and can be lethal at high concentrations.
Calcium (mg/L)	2023			n/a	Leaching from
Scenic System		50	n/a		natural deposits.
Ferrari System		21.5	21-22		
Gold Gulch System		59.33	4-133		
Magnesium (mg/L)	2023			n/a	Leaching from
Scenic System		7.8	n/a		natural deposits.
Ferrari System		5.7	5.3 - 6.10		
Gold Gulch System		16.53	1.9 – 37.4		
Potassium (mg/L)	2023			n/a	Leaching from
Scenic System		5.10	n/a		natural deposits.
Ferrari System		3.45	3 – 3.9		
Gold Gulch System		3.93	2.7 – 6.1		

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Lead Specific Language: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Forest Lakes Mutual Water Company is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4791) or at http://www.epa.gov/lead.

Arsenic Specific Language: While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. Forest Lakes Mutual Water Company blends sources containing arsenic with sources that contain no arsenic, thus reducing arsenic to a level that meets the standard set by the U.S. Environmental protection Agency. The arsenic standard balances the current understanding of arsenic's possible health effects against the cost of removing arsenic from drinking water. The U.S. Environmental protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in human at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Turbidity specific Language: is a measure of the cloudiness of the water. We monitor it because it is a good indicator of water quality. High turbidity can hinder the effectiveness of disinfectants.

Unregulated contaminant monitoring helps the U.S. Environmental protection Agency and the State Water Resources Control Board to determine where certain contaminates occur and whether the contaminants need to be regulated.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Table 7. Violation of a MCL, MRDL, AL, TT or Monitoring Reporting Requirement

Forest Lakes Mutual Water Company did not receive any violations during the 2023 calendar year.

Violation	Explanation	Duration	Actions Taken to Correct Violation	Health Effects Language
none				

